

Bianca Turini

Supervised by Prof. Stefan Heun Prof. Lucia Sorba

Revolutionary devices

The Josephson junction

- Gate tunability
- Scalability

- Dissipation-less
- Fast switching

Superconducting diodes

Spin orbit coupling + superconductivity

> III-V semiconductor/superconductor hybrid system

Single-junction Josephson diode

Heun Lab Sorba Lab Giazotto Lab

InSb Nanoflags

NF-based Josephson junctions

Observation of the JDE

InSb Nanoflags

NF-based Josephson junctions

InSb is appealing for spintronics

Small bandgap $E_g=0.23 \text{ eV}$

Low effective mass $m/m_o = 0.018$

 $Strong \,SOC \qquad \qquad E_{SOC} \sim 200 \, \mu eV$

Nanoflags are grown via Chemical Beam Epitaxy

Dr. I. Verma

NFs show high mobility

NFs are characterized via magneto-transport

NFs have a large effective g-factor

Zeeman energy

$$\delta E_z = g^* \mu_B B$$

Landau energy

$$\delta E_L = \hbar e B / m^*$$

Effective coupling

$$g^* = \frac{\delta E_Z}{\delta E_L} \frac{\hbar e}{\mu_B m^*} = 44$$

InSb Nanoflags

I. Verma et al., ACS ANM (2021)

gate-tunability high-mobility giant g*-factor

NF-based Josephson junctions

I. Verma et al., ACS ANM (2021)

gate-tunability high-mobility giant g*-factor

NF-based Josephson junctions

The device shows supercurrent

The device shows gate-tunable supercurrent

The junction works in the short-ballistic regime

@ T = 30 mK

Induced gap Δ* =160 μeV

(Golubov & Kupriyanov, 2005)

gate-tunability high-mobility giant g*-factor

NF-based Josephson junctions $\frac{\text{short-ballistic}}{\Delta_{s} \sim E_{soc}}$

S. Salimian et al., APL (2021)

gate-tunability high-mobility giant g*-factor

NF-based Josephson junctions short-ballistic $\Delta_{s} \sim E_{soc}$ S. Salimian *et al.*, APL (2021)

Different superconducting diodes exist

Strunk's lab (2022) 20

Different superconducting diodes exist

JDE is driven by the magnetic field

JDE depends on the relative angle

Rasmussen et al., PRB (2016)

JDE depends on temperature and back-gate voltage

gate-tunability InSb Nanoflags high-mobility

I. Verma et al., ACS ANM (2021)

NF-based Josephson junctions

giant g*-factor

short-ballistic $\Delta_{\rm S} \sim E_{\rm SOC}$

S. Salimian et al., APL (2021)

Observation of the JDE

B. Turini et al., Nano Lett. (2022)

field-induced JDE Rashba-type system gate-dependent n

NF-based JJs are a unique platform for exotic superconductivity

-> Half-integer Shapiro steps

Growth

V. Zannier

I. Verma L. Sorba

Fab

S. Salimian

M. Carrega

NF growth ACS ANM (2021)

NF-based JJs APL (2021)

Transport

A. lorio

E. Strambini **F. Giazotto**

S. Heun

JDE in InSb nanoflags Nano Lett. (2022) Half-integer Shapiro steps PRR (2023)