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Hydrogen Economy

• Decarbonization → Renewable 
Energy Sources

• Renewable sources are intermittent

→Energy storage

• Chemical energy storage under form 
of Hydrogen

→ Hydrogen storage
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Graphene

• First 2D material discovered

• Carbon allotrope

• Astonishing properties

▪ High specific surface area (2630 m2/g)

▪ High strength (∼ 103 times more than Steel 
or Kevlar)

▪ High charge carriers mobility 
(∼200000 cm2/Vs)

▪ High conductivity both electric and thermal 

(up to 𝜎 ∼
MS

m
and 𝜅 ∼ 4000

W

mK
 )

▪ Linear band dispersion at K and K’ points
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Why 3D?

• The adsorption of 1 mg of 𝐻2 on 
monolayer graphene would need 
~260 m2 of graphene

• For fit large area into a small 
volume the 3d dimension is needed

→ 3D Graphene
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Porous Silicon Carbide

• New 3D Carbon-based material

• Electrochemically porousified Silicon 
Carbide (SiC) wafer

• Metal Assisted Photochemical 
Etching (MAPCE)

• PhotoElectroChemical Etching (PECE)

4 S. Veronesi et al. Carbon 189 (Apr. 2022), pp. 210–218.
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• Graphenization of the SiC porous structure 
via thermal decomposition at 1650 K under 
Ultra High Vacuum condition

• 200 times more available surface

• Raman spectroscopy
• High quality graphene

3D Graphene
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3D Graphene – New Generation

• New etching procedure
MAPCE → PECE → MAPCE

• Same graphene growth condition

• High quality Graphene
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New vs. 1st Gen.

Large improvement in the graphene homogeneity, quality and quantity along the porous layer
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New Gen. – Hydrogen Storage
TDS measurements

▪ 𝛼 and 𝛽 peaks

• 216°C and 314°C (1.2 and 1.5 eV)

• Only upon D exposure

▪ 𝛾 and 𝛿 peaks

• 535°C and 641°C (2.0 and 2.3 eV)

• Catalytic splitting of D2

▪ P peak

• Physisorption

• “Fast” delayed emission: 
from 𝜏 ∼15 min to 𝜏 ∼70 s
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New Gen. – Hydrogen Storage

Uptake Comparison

• Higher Temperature Degassing
• Appearance of the X peak at 778°C 

(2.7eV)

• Observed also after D2 exposure
• About 100 times higher uptake

X
                                  𝛾 𝛿

     𝛼 𝛽Sample Uptake - D2 Uptake - D

1st gen. 2 ⋅ 10−12 mol 7 ⋅ 10−12 mol

New gen. 3 ⋅ 10−11 mol 9 ⋅ 10−11 mol
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Sample Uptake - D2 Uptake - D

1st gen. 2 ⋅ 10−12 mol 7 ⋅ 10−12 mol

New gen. 3 ⋅ 10−11 mol 9 ⋅ 10−11 mol

New  gen. - 900 2 ⋅ 10−10 mol 4 ⋅ 10−10 mol



3D Graphene – Metal Functionalization

• Gold NPs
Water → Ethanol

• Gold 1.1
• 1 drop of solution

• Gold 1.2
• 3 drops of solution

• Gold 1.3
• 45 min immersion under sonication

• Gold 1.4
• 24h immersion 
• Surface NPs density, 𝜎 ∼ 4 NPs/μm2 
• Pores NPs density, 𝜌 ∼ 1.5 NPs/μm2
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• AuNPs on New gen.
• 24h immersion

• 𝜎 = 220 ± 25 NPs/μm2 

• 𝜌 = 15 ± 1 NPs/μm2 

• NPs high diffusion length

• Further experiments:
• Longer immersion

• Higher concentration

AuNPs Functionalization
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Palladium NPs 1st Synthesis

• Palladium Acetate, Pd(OAc)2, in Sodium Dodecyl 
Sulphate, SDS, refluxed at 100°C under magnetic 
stirring → SDS-PdNPs

• NPs collection by 
ultra-high speed 
centrifugation

• NPs dispersion in 
ethanol

• AFM measurements
• Monodispersed NPs

• Tendency to cluster
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SDS-PdNPs Functionalization 

• Immersion in the SDS-PdNPs colloidal solution for 24h

• Successful functionalization

• NPs clustering
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SDS-PdNP-Functionalized 3D Graphene – Hydrogen Storage

• Annealing from 350°C to 800°C

• 800°C needed to restore the 
chemisorption

• Lower temperature is needed for 
Physisorption

• 30 min D2 exposure doesn’t lead to an 
uptake increase
• “Fast” delayed emission
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• SEM-EDX analysis

• Clustering

• Amorphous 
carbon residuals

• Sulfur poisoning

SDS-PdNP-Functionalized 3D Graphene – SEM/EDX
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• Palladium Acetate, Pd(OAc)2, and Poly(NVinyl-2-Pyrrolidone), 
PVP, in Ethylene Glycol, EG, heated under magnetic stirring 
→ PVP-PdNPs

• Smaller cap layer molecules → less amorphous carbon 

• AFM measurements
• Less monodispersed
• Clustering is absent

Palladium NPs 2nd Synthesis
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PVP-PdNPs Functionalization
• Immersion in the PVP-PdNPs colloidal 

solution for 24h

• Successful functionalization

• No clusters

• Diffusion inside the pores

• Large amount of deposited 
Pd is confirmed by XPS 
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PVP-PdNP-Functionalized 3D Graphene – Hydrogen Storage 

• Annealing from 600°C to 800°C

• Much larger chemisorption 
signal compared to SDS-NPs

• Physisorption less affected
(uptake similar to pristine)
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Pristine vs. Functionalized

D exposure

• Compatible uptakes

• Spectral shape change

D2 exposure

• Small reduction from 
3 ⋅ 10−11 mol to 
2 ⋅ 10−11 mol 

• Appearance of a new 
peak at 118°C (1 eV)
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• All Hydrogenation experiments were performed in a UHV chamber
(Hydrogenation pressure 10−7 mbar)

• Palladium Hydride need 𝑃 > 10 mbar (at RT)
• Spillover need high pressure to be effective (even tens of bar)

• High pressure experiments have to be performed
B. D. Adams, A. Chen,  Nature Materials 14.3 (Dec. 2014), pp. 271–279
Y. Li and R. T. Yang,  J. Phys. Chem. C 2007, 111, 29, 11086–11094
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Main Results

Sample Uptake - D2 Uptake - D

1st gen. 2 ⋅ 10−12 mol 7 ⋅ 10−12 mol

New gen. 3 ⋅ 10−11 mol 9 ⋅ 10−11 mol

New  gen. - 900 2 ⋅ 10−10 mol 4 ⋅ 10−10 mol

• Large improvement in the 3D graphene 
homogeneity, quality and quantity along the 
porous layer

• 100 times larger uptake of molecular 
deuterium on 3D graphene

• Found an effective metal NP functionalization 
procedure (demonstrated both with Au and 
Pd, and which should apply for every metal)

• Found optimal condition for PdNP 
functionalization 



Outlook

• Ongoing studies
• Higher pressure Hydrogenation 

experiments

• Computational simulations 

• TEM measurements

• Possible applications
• Supercapacitors

• Surface Enhanced Raman Spectroscopy 

• Sensors (Hydrogen, Food, etc.)
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Thank you for your attention!
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