

Università di Pisa

Master's Degree in Materials and Nanotechnology

Master's Thesis

Functionalization of 3D Graphene with Metal Nanoparticles: Perspectives for Hydrogen Storage

Candidate: Emanuele Pompei Supervisors: Dr. Stefano Veronesi Dr. Stefan Heun

Academic Year 2021-2022

Sustainable Renewable Energy

Graphene

- First 2D material discovered
- Carbon allotrope
- Astonishing properties
 - High specific surface area (2630 m²/g)
 - High strength (~ 10³ times more than Steel or Kevlar)
 - High charge carriers mobility (~200000 cm²/Vs)
 - High conductivity both electric and thermal (up to $\sigma \sim \frac{MS}{m}$ and $\kappa \sim 4000 \frac{W}{mK}$)
 - Linear band dispersion at K and K' points

Why 3D?

- The adsorption of 1 mg of H_2 on monolayer graphene would need ~260 m² of graphene
- For fit large area into a small volume the 3^d dimension is needed

→ 3D Graphene

- Metal Assisted Photochemical Etching (MAPCE)
- PhotoElectroChemical Etching (PECE)

Porous Silicon Carbide

- New 3D Carbon-based material
- Electrochemically porousified Silicon Carbide (SiC) wafer

S. Veronesi et al. Carbon 189 (Apr. 2022), pp. 210–218. M. Leitgeb et al. ECS Journal of Solid State Science and Technology 5.10 (2016), P556–P564

3D Graphene

 Graphenization of the SiC porous structure via thermal decomposition at 1650 K under Ultra High Vacuum condition

- 200 times more available surface
- Raman spectroscopy
 - High quality graphene

3D Graphene – New Generation

• New etching procedure MAPCE \rightarrow PECE \rightarrow MAPCE

- Same graphene growth condition
 - High quality Graphene

New vs. 1st Gen.

Large improvement in the graphene homogeneity, quality and quantity along the porous layer

ח כ / ו

New Gen. – Hydrogen Storage

TDS measurements

- α and β peaks
 - 216°C and 314°C (1.2 and 1.5 eV)
 - Only upon D exposure
- γ and δ peaks
 - 535°C and 641°C (2.0 and 2.3 eV)
 - Catalytic splitting of D₂

P peak

- Physisorption
- "Fast" delayed emission: from $\tau \sim 15$ min to $\tau \sim 70$ s

Desorption

Diffusion

8

New Gen. – Hydrogen Storage

Uptake Comparison

Sample	Uptake - D ₂	Uptake - D
1 st gen.	$2\cdot 10^{-12}$ mol	$7\cdot 10^{-12}$ mol
New gen.	$3\cdot 10^{-11}~\text{mol}$	$9\cdot 10^{-11}\text{mol}$
New gen 900	$2\cdot 10^{-10} \text{ mol}$	$4\cdot 10^{-10} \text{ mol}$

- Higher Temperature Degassing
 - Appearance of the X peak at 778°C (2.7eV)
 - Observed also after D₂ exposure
 - About 100 times higher uptake

3D Graphene – Metal Functionalization

- Gold NPs Water → Ethanol
- Gold 1.1
 - 1 drop of solution
- Gold 1.2
 - 3 drops of solution
- Gold 1.3
 - 45 min immersion under sonication
- Gold 1.4
 - 24h immersion
 - Surface NPs density, $\sigma \sim 4 \text{ NPs}/\mu\text{m}^2$
 - Pores NPs density, $ho \sim 1.5~{
 m NPs}/{
 m \mu m^2}$

AuNPs Functionalization

- AuNPs on New gen.
 - 24h immersion
 - $\sigma = 220 \pm 25 \text{ NPs}/\mu\text{m}^2$
 - $\rho = 15 \pm 1 \text{ NPs}/\mu\text{m}^2$
 - NPs high diffusion length

- Longer immersion
- Higher concentration

Palladium NPs 1st Synthesis

- Palladium Acetate, Pd(OAc)₂, in Sodium Dodecyl Sulphate, SDS, refluxed at 100°C under magnetic stirring → SDS-PdNPs
- NPs collection by ultra-high speed centrifugation
- NPs dispersion in ethanol
- AFM measurements
 - Monodispersed NPs
 - Tendency to cluster

SDS-PdNPs Functionalization

- Immersion in the SDS-PdNPs colloidal solution for 24h
- Successful functionalization
- NPs clustering

SDS-PdNP-Functionalized 3D Graphene – Hydrogen Storage

- Annealing from 350°C to 800°C
- 800°C needed to restore the chemisorption
- Lower temperature is needed for Physisorption
- 30 min D_2 exposure doesn't lead to an uptake increase
 - "Fast" delayed emission

SDS-PdNP-Functionalized 3D Graphene – SEM/EDX

- SEM-EDX analysis
 - Clustering
 - Amorphous carbon residuals

Pd ١Si С Objects 422 Counts [a.u.] Ο ١Si Counts [a.u.] Objects 423 Pd S Si Counts [a.u.] 10¹ 10¹ Objects 424 S Pd Photon Energy [keV]

• Sulfur poisoning

Palladium NPs 2nd Synthesis

- Palladium Acetate, Pd(OAc)₂, and Poly(NVinyl-2-Pyrrolidone), PVP, in Ethylene Glycol, EG, heated under magnetic stirring → PVP-PdNPs
- Smaller cap layer molecules \rightarrow less amorphous carbon
- AFM measurements
 - Less monodispersed
 - Clustering is absent

PVP-PdNPs Functionalization

- Immersion in the PVP-PdNPs colloidal solution for 24h
- Successful functionalization
- No clusters
- Diffusion inside the pores
- Large amount of deposited Pd is confirmed by XPS

PVP-PdNP-Functionalized 3D Graphene – Hydrogen Storage

- Annealing from 600°C to 800°C
- Much larger chemisorption signal compared to SDS-NPs
- Physisorption less affected (uptake similar to pristine)

Main Results

• Large improvement in the 3D graphene homogeneity, quality and quantity along the

• 100 times larger uptake of molecular deuterium on 3D graphene

Sample	Uptake - D ₂	Uptake - D
1 st gen.	$2\cdot 10^{-12}$ mol	$7\cdot 10^{-12}$ mol
New gen.	$3\cdot 10^{-11}~\text{mol}$	$9\cdot 10^{-11}$ mol
New gen 900	$2\cdot 10^{-10} \text{ mol}$	$4\cdot 10^{-10} \text{ mol}$

 Found an effective metal NP functionalization procedure (demonstrated both with Au and Pd, and which should apply for every metal)

• Found optimal condition for PdNP

functionalization

Outlook

- Ongoing studies
 - Higher pressure Hydrogenation experiments
 - Computational simulations
 - TEM measurements
- Possible applications
 - Supercapacitors
 - Surface Enhanced Raman Spectroscopy
 - Sensors (Hydrogen, Food, etc.)

Thank you for your attention!

Acknowledgments

 Ylea Vlamidis

 @ CNR-NANO, Pisa
 (Raman Spectroscopy and AFM measurements, and PdNPs synthesis)

Valentina Zannier
 @ CNR-NANO, Pisa
 (SEM measurements)

Silvia Rubini @ CNR-IOM, Trieste (XPS measurements)

U. Schmid, C. Zellner, M. Leitgeb and M. Schneider @ TU Wien (porousified Silicon Carbide samples)

