Superconducting Quantum Interference Devices based on InSb Nanoflag Josephson Junctions

Andrea Chieppa¹, Gaurav Shukla¹, Simone Traverso^{2,3}, Giada Bucci¹, Valentina Zannier¹, Samuele Fracassi^{2,3}, Niccolò Traverso Ziani^{2,3}, Maura Sassetti^{2,3}, Matteo Carrega³, Fabio Beltram¹, Francesco Giazotto¹, Lucia Sorba¹, <u>and Stefan Heun¹</u>

¹NEST, Istituto Nanoscienze-CNR and Scuola Normale Superiore, Pisa, Italy ²Dipartimento di Fisica, Università di Genova, Genoa, Italy ²CNR-SPIN, Genoa, Italy

- Narrow bandgap (0.23 eV) → mid-infrared optoelectronic devices.
- High bulk electron mobility (7.7 x 10⁴ cm²/(Vs)), small effective mass (0.018 m_e) → highspeed and low-power electronic devices.
- Strong spin-orbit interaction ($E_{SOI} \sim 200 \ \mu eV$), large Landé g-factor ($g^* \sim 50$) \longrightarrow spintronics and topological quantum computing.

InSb nanowires:

<u>500 nm</u>

Nano Lett. 2019, 19, 6, 3575–3582

6

×10⁴

InSb quantum wells:

Nat Commun 10, 3764 (2019)

National Enterprise for nanoScience and nanoTechnology

Twin-Induced InSb Nanosails: A Convenient High Mobility Quantum System

María de la Mata,[†] Renaud Leturcq,^{*,‡,§} Sébastien R. Plissard,^{||} Chloé Rolland,[‡] César Magén,[⊥] Jordi Arbiol,^{*,†,#} and Philippe Caroff^{*,‡, ∇}

Nano Lett. 16 (2016) 825

Bottom-Up Grown 2D InSb Nanostructures

Sasa Gazibegovic,* Ghada Badawy,* Thijs L. J. Buckers, Philipp Leubner, Jie Shen, Folkert K. de Vries, Sebastian Koelling, Leo P. Kouwenhoven, Marcel A. Verheijen, and Erik P. A. M. Bakkers

Adv. Mater. 31 (2019) 1808181

Free-Standing Two-Dimensional Single-Crystalline InSb Nanosheets

D. Pan, † D. X. Fan, ‡ N. Kang, ‡ J. H. Zhi, ‡ X. Z. Yu, † H. Q. Xu, *,‡ and J. H. Zhao *,†

Nano Lett. 16 (2016) 834

Defect-free InSb zinc blende lattice

InSb nanoflags: Length 2-3 μm Width 500 nm Thickness 100 nm

National Enterprise for nanoScience and nanoTechnology

I. Verma et al., ACS Applied Nano Materials 4 (2021) 5825.

- Single crystal, ZB structure
- length $\sim 2.8 \ \mu m$
- width $\sim 500 \text{ nm}$
- thickness $\sim 100 \text{ nm}$
- • $m^* = 0.02m_e$
- $E_g = 0.23 \text{ eV}$
- • $|g^*| = 50$

Appl. Phys. Lett. 119 (2021) 214004.

National Enterprise for nanoScience and nanoTechnology

Talk by Gaurav Shukla on Thursday at 12:00

Introduction to SQUIDs (Superconducting Quantum Interference Devices)

From Josephson Junctions to SQUIDs

SNS Josephson Junctions

Superconductor

Semiconductor

SNS Josephson Junctions

SuperconductorSemiconductor

Josephson Effect

14

N = normal material non superconducting

SNS Josephson Junctions

Superconductor
Semiconductor

CNRNANO

N = normal material non superconducting

SQUID based on SNS Josephson Junctions

Superconductor

Semiconductor

SQUID based on SNS Josephson Junctions

Superconductor

Semiconductor

ADS T. 1343

SQUID based on SNS Josephson Junctions

Josephson Effect

Josephson Effect

- Josephson Effect
- Flux quantization $\rightarrow I_c(\Phi)$

• Flux quantization $\rightarrow I_c(\Phi)$

- Josephson Effect
- Flux quantization $\rightarrow I_c(\Phi)$

- Josephson Effect
- Flux quantization $\rightarrow I_c(\Phi)$

SQUIDs based on InSb nanoflags

Experimental Results

Scanning electron micrographs

Symmetric SQUID

- $L \approx 200 \text{ nm}$
- $W_1 = W_2 \approx 0.4 \ \mu m$

Scanning electron micrographs

Symmetric SQUID

Asymmetric SQUID

- $L \approx 200 \text{ nm}$
- $W_1 = W_2 \approx 0.4 \ \mu m$

• L ≈ 200 nm • W₁ ≈ 1.7μm • W₂ ≈ 0.5 μm

Scanning electron micrographs

Symmetric SQUID

Asymmetric SQUID

- $L \approx 200 \text{ nm}$
- $W_1 = W_2 \approx 0.4 \ \mu m$

• L ≈ 200 nm • W₁ ≈ 1.7μm • W₂ ≈ 0.5 μm

Symmetric SQUID

Asymmetric SQUID

VI traces @ T = 350 mK

NORMALI

SQUID JoFETs (Josephson Field Effect Transistor)

Symmetric SQUID

Asymmetric SQUID

Interference in the symmetric SQUID

National Enterprise for nanoScience and nanoTechnology

Results for the asymmetric SQUID

A. Chieppa et al., arXiv:2504.18965 [cond-mat.mes-hall].

A. Chieppa et al., arXiv:2504.18965 [cond-mat.mes-hall].

chnology

Non-reciprocal transport

Josephson Diode Effect

[Ω] Ib/Vb

• Minima in I_{c+} , I_{c-} for different magnetic fields

[Ω] Ib/Vb

• Minima in I_{c+} , I_{c-} for different magnetic fields

[Ω] Ib/Vb

•
$$\eta[\%] = \frac{I_{c+} - |I_{c-}|}{I_{c+} + |I_{c-}|} \cdot 100$$

•
$$\eta[\%] = \frac{I_{c+} - |I_{c-}|}{I_{c+} + |I_{c-}|} \cdot 100 \approx 6\%$$

Magnetometer performance

SQUID as a flux-to-voltage transducer

(a)

National Enterprise for nanoScience and nanoTechnology

(a)

National Enterprise for nanoScience and nanoTechnology

NIC C S P

- SQUIDs realized using InSb nanoflag Josephson junctions.
- Symmetric and asymmetric geometries were implemented.
- Theoretical framework accounts for all observations.
- Transparency of the junctions can be modulated by a back gate.
- Non-reciprocal transport demonstrated (Josephson Diode Effect).
- SQUID performance as magnetometer has been evaluated.

Thank you for your attention!

