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Why InSb?

•Narrow bandgap (0.23 eV)                mid-infrared 
optoelectronic devices.

•High bulk electron mobility (7.7 x 104 cm2/(Vs)), 
small effective mass (0.018 me)                  high-
speed and low-power electronic devices.

•Strong spin-orbit interaction (E𝑆𝑂𝐼 ∼ 200 𝜇eV), 
large Landé g-factor (𝑔∗ ∼ 50)                 
spintronics and topological quantum 
computing.



InSb nanostructures

• InSb nanowires:

• InSb quantum wells: 

Nat Commun 10, 3764 (2019)

Nano Lett. 2019, 19, 6, 3575–3582



A novel approach: 2D nanoflags (NFs)

Nano Lett. 16 (2016) 834

Adv. Mater. 31 (2019) 1808181

Nano Lett. 16 (2016) 825



From nanowires (1D) to nanoflags (2D)

Tapered InP nanowires are used as stems

The 2D shape is obtained with directional fluxes

I. Verma et al., ACS Applied Nano Materials 4 (2021) 5825.



Growth of InSb nanoflags by CBE

InSb nanoflags:
Length 2-3 μm
Width 500 nm
Thickness 100 nm

I. Verma et al., ACS Applied Nano Materials 4 (2021) 5825.

Defect-free InSb 
zinc blende 
lattice



InSb Nanoflags

•Single crystal, ZB structure

• length ~ 2.8 μm

•width ~ 500 nm

• thickness ~ 100 nm

•𝑚∗ = 0.02𝑚𝑒

•𝐸𝑔 = 0.23 eV

• 𝑔∗ = 50

Appl. Phys. Lett. 119 (2021) 214004.
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Introduction to SQUIDs (Superconducting 
Quantum Interference Devices) 
From Josephson Junctions to SQUIDs
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SQUIDs based on InSb nanoflags
Experimental Results



Scanning electron micrographs
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Scanning electron micrographs
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Scanning electron micrographs
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Asymmetric SQUIDSymmetric SQUID

Global back gate p − type Si

Dielectric SiO2 285 nm

• L ≈ 200 nm

• W1 = W2 ≈ 0.4 μm
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𝑉𝐼 traces @ 𝑇 = 350 mK

𝑉𝑏𝑔 = 20.0 V 𝑉𝑏𝑔 = 18.0 V
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SQUID JoFETs (Josephson Field Effect Transistor)

42

Asymmetric SQUIDSymmetric SQUID

𝑇 = 350 mK
Back gate control of supercurrent



Interference in the symmetric SQUID



Interference vs. back gate

B [µT]                                                  B [µT]

A. Chieppa et al., arXiv:2504.18965 [cond-mat.mes-hall].



Interference vs. back gate



Results for the asymmetric SQUID



Interference vs. back gate

A. Chieppa et al., arXiv:2504.18965 [cond-mat.mes-hall].



Interference vs. back gate

A. Chieppa et al., arXiv:2504.18965 [cond-mat.mes-hall].



Interference vs. back gate

A. Chieppa et al., arXiv:2504.18965 [cond-mat.mes-hall].

Loss of interference



Non-reciprocal transport
Josephson Diode Effect



Josephson Diode 
Effect in SQUIDs
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Josephson Diode 
Effect in SQUIDs
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• 𝜂 % =
𝐼𝑐+ −|𝐼𝑐−|

𝐼𝑐+ + 𝐼𝑐− 
⋅ 100 ≈ 6%

𝑇 = 350 mK
𝑉𝑏𝑔 = 18 V



Magnetometer performance
SQUID as a flux-to-voltage transducer



Transfer function characteristics

A. Chieppa et al., arXiv:2504.18965 [cond-mat.mes-hall].



Voltage responsivity 𝑉Φ = Τ𝜕𝑉
𝜕Φ

A. Chieppa et al., arXiv:2504.18965 [cond-mat.mes-hall].



Maximum responsivity vs. back gate

A. Chieppa et al., arXiv:2504.18965 [cond-mat.mes-hall].

Magnetic flux noise amplitude 𝑆Φ
1/2

= 4.4 × 10−6 ΤΦ0 Hz 



Conclusions

•SQUIDs realized using InSb nanoflag Josephson junctions.

•Symmetric and asymmetric geometries were implemented.

•Theoretical framework accounts for all observations.

•Transparency of the junctions can be modulated by a back gate.

•Non-reciprocal transport demonstrated (Josephson Diode Effect).

•SQUID performance as magnetometer has been evaluated.



Thank you for your attention!
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