

Superconducting Quantum Interference Devices based on InSb Nanoflag Josephson Junctions

Andrea Chieppa¹, Gaurav Shukla¹, Giada Bucci¹, Valentina Zannier¹, Samuele Fracassi^{2,3}, Simone Traverso^{2,3}, Niccolo Traverso Ziani^{2,3}, Maura Sassetti^{2,3}, Matteo Carrega², Fabio Beltram¹, Francesco Giazotto¹, Lucia Sorba¹, Stefan Heun¹ ¹ NEST, Istituto Nanoscienze-CNR and Scuola Normale Superiore, P. San Silvestro 12, 56127 Pisa, Italy ² CNR-SPIN, Via Dodecaneso 33, 16146 Genova, Italy

Università di **Genova**

³ Dipartimento di Fisica, Università di Genova, Via Dodecaneso 33, 16146 Genova, Italy

Why InSb?

- Narrow bandgap (0.23 eV)
- High bulk electron mobility $(7.7 \times 10^4 \text{ cm}^2/(\text{Vs}))$
- Small effective mass (0.018 m_e)
- Strong spin-orbit interaction ($E_{SOI} \sim 200 \,\mu eV$)
- Large Landé g-factor ($g^* \sim 50$)

InSb nanostructures

Nat Commun 10 (2019) 3764

tanding Two-Dimensional Single-Crystalline InSb Nano n,[†] D. X. Fan,[‡] N. Kang,[‡] J. H. Zhi,[‡] X. Z. Yu,[†] H. Q. Xu,^{**‡} and J. H. Zhao^{**†}

2D Nanoflags (NFs)

ano Lett. 16 (2016) 83،

Adv. Mater. 31 (2019) 1808181

SQUIDs based on InSb nanoflags

Symmetric SQUID Asymmetric SQUID Scanning electron micrographs

• $L \approx 200 \text{ nm}$ • $L \approx 200 \text{ nm}$ • $W_1 = W_2 \approx 0.4 \ \mu m$ • $W_1 \approx 1.7 \ \mu m$

• $W_2 \approx 0.5 \,\mu m$

Asymmetric SQUID Symmetric SQUID

SQUID conductance $G = G_{JJ1} + G_{JJ2}$

VI traces @ T = 350 mK

Interference in the SQUID

Interference in the symmetric SQUID

Tight-binding simulations

)		(b)		
0 -	$ I_1(\varphi), V_{bg} = 8V$	0 -	•	• Harmonics $I_1(\varphi), V_{bg} = 8V$
	$I_{c1}(8V)\sin\varphi$			• Harmonics $I_1(\varphi), V_{bg} = 20V$
) -	$L(a) V_{a} = 20 V_{a}$	-		

Results for the asymmetric SQUID

Loss of interference

SQUID as a flux-to-voltage transducer

Magnetic flux noise amplitude $S_{\Phi}^{1/2} = 4.4 \times 10^{-6} \Phi_0 / \sqrt{\text{Hz}}$

Non-reciprocal transport

Conclusions

- SQUIDs realized using InSb nanoflag Josephson junctions.
- Symmetric and asymmetric geometries were implemented.
- Theoretical framework accounts for all observations.
- Transparency of the junctions can be modulated by a back gate.
- Non-reciprocal transport demonstrated (Josephson Diode Effect).
- SQUID performance as magnetometer has been evaluated.

The authors acknowledge support from project PRIN2022 2022-PH852L(PE3) TopoFlags-"Non-reciprocal supercurrent and topological transition in hybrid Nb-InSb nanoflags" funded by the European community-Next Generation EU within the program "PNRR Missione 4-Componente 2-Investimento" 1.1 Fondo per il Programma Nazionale di Ricerca e Progetti di Rilevante Interesse Nazionale (PRIN)" and by PNRR MUR Project No. PE0000023-NQSTI. F.G. acknowledges the EU's Horizon 2020 Research and Innovation Framework Programme under Grants No. 964398 (SUPERGATE) and No. 101057977 (SPECTRUM) for partial financial support.

