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InSb nanostructures

InSb nanowires:

InSb quantum wells: 
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Why InSb?
• Narrow bandgap (0.23 eV)
• High bulk electron mobility (7.7 x 104 cm2/(Vs))
• Small effective mass (0.018 me)
• Strong spin-orbit interaction (E𝑆𝑂𝐼 ∼ 200 𝜇eV)
• Large Landé g-factor (𝑔∗∼50)

From Nanowires (1D) to Nanoflags (2D)

The 2D shape is
obtained with 

directional fluxes

Tapered InP nanowires are used as stems

I. Verma et al., ACS Applied Nano Materials 4 (2021) 5825.

Growth of InSb nanoflags by CBE

InSb nanoflags:
Length 2-3 μm
Width 500 nm
Thickness 100 nm

Defect-free InSb 
zinc blende lattice
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SQUIDs based on InSb nanoflags

Scanning electron micrographs

Global back gate p − type Si

Dielectric SiO2 285 nm

Asymmetric SQUIDSymmetric SQUID

• L ≈ 200 nm

• W1 ≈ 1.7μm

• W2 ≈ 0.5 μm

• L ≈ 200 nm

• W1 = W2 ≈ 0.4 μm

SQUID conductance G = GJJ1 + GJJ2

Asymmetric SQUIDSymmetric SQUID

𝑇 = 2 K

𝑉𝐼 traces @ 𝑇 = 350 mK

𝑉𝑏𝑔 = 20.0 V 𝑉𝑏𝑔 = 18.0 V

SQUID Josephson Field Effect Transistor

𝑇 = 350 mK

Back gate control of supercurrent

Interference in the SQUID
Interference in the symmetric SQUID

Tight-binding simulations

Results for the asymmetric SQUID

Loss of interference

Non-reciprocal transport
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Magnetometer performance

Magnetic flux noise amplitude 𝑆Φ
1/2

= 4.4 × 10−6 ΤΦ0 Hz

SQUID as a flux-to-voltage transducer

Transfer function Voltage responsivity Maximum responsivity

Conclusions
• SQUIDs realized using InSb nanoflag Josephson junctions.

• Symmetric and asymmetric geometries were implemented.

• Theoretical framework accounts for all observations.

• Transparency of the junctions can be modulated by a back gate.

• Non-reciprocal transport demonstrated (Josephson Diode Effect).

• SQUID performance as magnetometer has been evaluated.
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