Cavity optomechanics: – interactions between light and nanomechanical motion

Florian Marquardt

University of Erlangen-Nuremberg, Germany, and Max-Planck Institute for the Physics of Light (Erlangen)

Radiation pressure

(Comet Hale-Bopp; by Robert Allevo)

Radiation pressure

Johannes Kepler De Cometis, 1619

Radiation pressure

Nichols and Hull, 1901 Lebedev, 1901

A PRELIMINARY COMMUNICATION ON THE PRESSURE OF HEAT AND LIGHT RADIATION.

BY E. F. NICHOLS AND G. F. HULL.

MAXWELL,¹ dealing mathematically with the stresses in an electro-magnetic field, reached the conclusion that "in a medium in which waves are propagated there is a pressure normal to the waves and numerically equal to the energy in unit volume."

Nichols and Hull, Physical Review **13**, 307 (1901)

Radiation forces

Trapping and cooling

- Optical tweezers
- Optical lattices

...but usually no back-action from motion onto light!

Optomechanics on different length scales

LIGO – Laser Interferometer Gravitational Wave Observatory

$$\omega_M \sim 1 \text{kHz} - 1 \text{GHz}$$

$$m \sim 10^{-12} - 10^{-10} \text{kg}$$

$$x_{\text{ZPF}} \sim 10^{-16} - 10^{-14} \text{m}$$

$$x_{\text{ZPF}} = \sqrt{\hbar/(2m\omega_M)} \checkmark$$

Mirror on cantilever – Bouwmeester lab, Santa Barbara (2006)

$\hat{H} = \hbar \omega_{\rm cav}(\hat{x})\hat{a}^{\dagger}\hat{a} + \hbar \omega_M \hat{b}^{\dagger}\hat{b} + \dots$

...any dielectric moving inside a cavity generates an optomechanical interaction!

The zoo of optomechanical (and analogous) systems

The zoo of optomechanical (and analogous) systems

The zoo of optomechanical (and analogous) systems

Optomechanics: general outlook

Fundamental tests of quantum mechanics in a new regime: entanglement with 'macroscopic' objects, unconventional decoherence?

[e.g.: gravitationally induced?]

Mechanics as a 'bus' for connecting hybrid components: superconducting qubits, spins, photons, cold atoms,

Precision measurements

small displacements, masses, forces, and accelerations

50 µm 100 µm Tang lab (Yale)

Optomechanical circuits & arrays Exploit nonlinearities for classical and quantum information processing, storage, and amplification; study collective dynamics in arrays

Towards the quantum regime of mechanical motion

🌌 PHYSICS TODAY

The quantum mechanic's toolbox

Putting Mechanics into Quantum Mechanics

Nanoelectromechanical structures are starting to approach the ultimate quantum mechanical limits for detecting and exciting motion at the nanoscale. Nonclassical states of a mechanical resonator are also on the horizon.

Keith C. Schwab and Michael L. Roukes

everything moves! In a world dominated by electronic devices and instruments it is easy to forget that all measurements involve motion, whether it be the motion of electrons through a transistor, Cooper pairs or quasiparticles through a superconducting quantum interference device (SQUID), photons through an optical interferometer-or the simple displacement of a mechanical element

achieved to read out those devices, now bring us to the realm of quantum mechanical systems.

The quantum realm

What conditions are required to observe the quantum properties of a mechanical structure, and what can we learn when we encounter them? Such questions have received

Schwab and Roukes, Physics Today 2005

nano-electro-mechanical systems
 Superconducting qubit coupled to nanoresonator: Cleland & Martinis 2010

optomechanical systems

Laser-cooling towards the ground state

Optomechanics (Outline)

Optical displacement detection

Thermal fluctuations of a harmonic oscillator

Classical equipartition theorem:

$$\frac{m\omega_M^2}{2} \langle x^2 \rangle = \frac{k_B T}{2} \Rightarrow \langle x^2 \rangle = \frac{k_B T}{m\omega_M^2}$$
extract temperature!

•Direct time-resolved detection

Analyze fluctuation spectrum of x

Fluctuation spectrum

Fluctuation spectrum

Fluctuation-dissipation theorem

General relation between noise spectrum and linear response susceptibility

$$\langle \delta x \rangle (\omega) = \chi_{xx}(\omega) F(\omega)$$

susceptibility
 $S_{xx}(\omega) = \frac{2k_B T}{\omega} \operatorname{Im} \chi_{xx}(\omega)$ (classical limit)

Fluctuation-dissipation theorem

General relation between noise spectrum and linear response susceptibility

$$\langle \delta x \rangle (\omega) = \chi_{xx}(\omega) F(\omega)$$
susceptibility
$$S_{xx}(\omega) = \frac{2k_BT}{\omega} \operatorname{Im}\chi_{xx}(\omega) \quad \text{(classical limit)}$$
for the damped oscillator:
$$m\ddot{x} + m\omega_M^2 x + m\Gamma\dot{x} = F$$

$$x(\omega) = \frac{1}{m(\omega_M^2 - \omega^2) - im\Gamma\omega} F(\omega)$$

$$\chi_{xx}(\omega)$$

for

General relation between noise spectrum and linear response susceptibility

Displacement spectrum

Teufel et al., Nature 2011

Measurement noise

Measurement noise

Two contributions to $x_{noise}(t)$

- I. measurement imprecision laser beam (shot noise limit!)
- 2. measurement back-action:
- fluctuating force on system
- noisy radiation pressure force

"Standard Quantum Limit"

Best case allowed by quantum mechanics:

 $S_{xx}^{(\text{meas})}(\omega) \ge 2 \cdot S_{xx}^{T=0}(\omega) \qquad \text{``Standard quantum limit} \\ (SQL) \text{ of displacement} \\ \text{detection''}$

...as if adding the zero-point fluctuations a second time: "adding half a photon"

Notes on the SQL

- "weak measurement": integrating the signal over time to suppress the noise
- trying to detect slowly varying "quadratures of motion": $\hat{x}(t) = \hat{X}_1 \cos(\omega_M t) + \hat{X}_2 \sin(\omega_M t)$ $\left[\hat{X}_1, \hat{X}_2\right] = 2x_{\text{ZPF}}^2$ Heisenberg is the reason for SQL! no limit for instantaneous measurement of x(t)!
- SQL means: detect $\hat{X}_{1,2}$ down to x_{ZPF} on a time scale $1/\Gamma$ Impressive: $x_{\text{ZPF}} \sim 10^{-15} m$!

Optomechanics (Outline)

$$F_{\text{rad}}(x) = 2I(x)/c$$

$$\frac{\lambda}{2\mathcal{F}} \qquad \lambda/2$$

$$V_{\text{rad}}(x)$$

$$V_{\text{rad}}(x)$$

$$V_{\text{eff}} = V_{\text{rad}} + V_{\text{HO}}$$

$$x$$

Experimental proof of static bistability: A. Dorsel, J. D. McCullen, P. Meystre, E. Vignes and H. Walther: Phys. Rev. Lett. 51, 1550 (1983)

Basic physics: dynamics

Equations of motion

Equations of motion

Linearized optomechanics

$$\alpha(t) = \bar{\alpha} + \delta \alpha(t)$$
$$x(t) = \bar{x} + \delta x(t)$$

$$\Rightarrow \dots \Rightarrow$$
(solve for arbitrary $F_{\text{ext}}(\omega)$)

$$\delta x(\omega) = \frac{1}{m(\omega_M^2 - \omega^2) - im\omega\Gamma + \Sigma(\omega)} F_{\text{ext}}(\omega)$$

$$\chi_{xx}^{\text{eff}}(\omega)$$

$$\delta \omega_M^2 = \frac{1}{m} \text{Re}\Sigma(\omega_M)$$

$$\int_{\text{opt}} \text{Optomechanical frequency shift ("optical spring")}}_{\Gamma_{\text{opt}} = -\frac{1}{m\omega_M}} \text{Im}\Sigma(\omega_M)$$
Effective optomechanical damping rate

Linearized dynamics

Linearized dynamics

Optomechanical Hamiltonian

Quantum optomechanics: Linearized Hamiltonian

$$\hat{a} = \alpha + \delta \hat{a}$$

large amplitude quantum fluctuations
(laser drive)

Sufficient to explain (almost) all current optomechanical experiments in the quantum regime

Mechanics & Optics

After linearization: two linearly coupled harmonic oscillators!

Different regimes

Optomechanics (Outline)

esponse to cantilever motion Self-induced oscillations

esponse to cantilever motion Self-induced oscillations

Beyond some laser input power threshold: instability Cantilever displacement x Amplitude A Time t

An optomechanical cell as a Hopf oscillator

Amplitude fixed, phase undetermined!

Höhberger, Karrai, IEEE proceedings 2004

Carmon, Rokhsari, Yang, Kippenberg, Vahala, PRL 2005

FM, Harris, Girvin, PRL 2006

Metzger et al., PRL 2008

Coupled oscillators?

Coupled oscillators?

Collective dynamics in an array of coupled cells? Phase-locking: **synchronization**!

Synchronization: Huygens' observation

(Huygens' original drawing!)

Coupled pendula synchronize...

...even though frequencies slightly different

Classical nonlinear collective dynamics: Synchronization in an optomechanical array

Experiments (two cells, joint optical mode)

Michal Lipson lab, Cornell

Hong Tang lab, Yale

(Zhang et al., PRL 2012)

Effective Kuramoto model

Effective Kuramoto model

Effective Kuramoto-type model for coupled Hopf oscillators:

 $\delta \dot{\varphi} = \delta \Omega - 2K_s \sin(2\delta\varphi) - 2K_c \cos(2\delta\varphi)$

Effective Kuramoto model

Synchronization in optomechanical arrays

Optomechanical arrays

Optomechanical array: Many coupled optomechanical cells

mechanical mode

Possible design based on "snowflake" 2D optomechanical crystal (Painter group), here: with suitable defects forming a superlattice (array of cells)

Pattern formation in optomechanical arrays

Transition towards coherent mechanical oscillations

Mechanical quantum states

Incoherent mechan. oscillations (weak inter-cell coupling)

Mechanical Wigner density shows incoherent mixture of all possible oscillation phases

Coherent mechan. oscillations (strong inter-cell coupling)

Mechanical Wigner density shows preferred phase (coherent state) – spontaneous symmetry breaking!

Transition towards coherent mechanical oscillations

$$\langle \hat{b} \rangle(t) = \bar{b} + r e^{-i\Omega_{\rm eff}t}$$
 "order parameter" ("mechanical coherence")

Max Ludwig, FM, PRL 111, 073603 (2013): Quantum many-body dynamics in optomechanical arrays

Optomechanics (Outline)

Cooling with light

Current goal in the field: ground state of mechanical motion of a macroscopic cantilever

Classical theory:

Pioneering theory and experiments: **Braginsky** (since 1960s)

 $T_{\rm eff} = T \cdot \frac{\Gamma_M}{\Gamma_{\rm opt} + \Gamma_M}$ $T_{\rm optomechanical damping rate}$

Cooling with light

Current goal in the field: ground state of mechanical motion of a macroscopic cantilever

 $k_B T_{\rm eff} \ll \hbar \omega_M$

Classical theory: quantum limit? $T_{\rm eff} = T \cdot \frac{\Gamma_M}{\Gamma_{\rm opt} + \Gamma_M} \xrightarrow{\rightarrow 0 ?} 0?$ Pioneering theory and experiments: Braginsky (since 1960s)

Cooling with light

Quantum picture: Raman scattering – sideband cooling

Original idea:

Sideband cooling in ion traps – Hänsch, Schawlow / Wineland, Dehmelt 1975

Similar ideas proposed for nanomechanics:

cantilever + quantum dot – Wilson-Rae, Zoller, Imamoglu 2004 cantilever + Cooper-pair box – Martin Shnirman, Tian, Zoller 2004 cantilever + ion – Tian, Zoller 2004 cantilever + supercond. SET – Clerk, Bennett / Blencowe, Imbers, Armour 2005, Naik et al. (Schwab group) 2006

Quantum noise approach

Quantum noise approach

Quantum noise approach

Quantum theory of optomechanical cooling

Spectrum of radiation pressure fluctuations

$$S_{FF}(\omega) = \int e^{i\omega t} \left\langle \hat{F}(t)\hat{F}(0) \right\rangle dt$$
radiation
pressure
 $\hat{F} = \left(\frac{\hbar\omega_R}{L}\right) \hat{a}^{\dagger}\hat{a}$
photon number
$$S_{FF}(\omega) = \left(\frac{\hbar\omega_R}{L}\right)^2 \bar{n}_p \frac{\kappa}{(\omega + \Delta)^2 + (\kappa/2)^2}$$

photon shot noise spectrum

$\frac{dt e^{i\omega t}(\langle \hat{n}(t) \hat{n}(0) \rangle - \bar{n}^{2})}{Q} = \sqrt{n} \frac{1}{Q} \frac{1$

FM, Chen, Clerk, Girvin, PRL **93**, 093902 (2007) *also:* Wilson-Rae, Nooshi, Zwerger, Kippenberg, PRL **99**, 093901 (2007); Genes et al, PRA 2008

experiment with $~\kappa/\omega_M\approx 1/20$ Kippenberg group 2007

Cooling rate

$$\Gamma_{\text{opt}} = \frac{x_{\text{ZPF}}^2}{\hbar^2} [S_{FF}(+\omega_M) - S_{FF}(-\omega_M)]$$

Quantum limit for cantilever phonon number

$$\frac{n_{\rm opt} + 1}{n_{\rm opt}} = \frac{S_{FF}(+\omega_M)}{S_{FF}(-\omega_M)}$$
$$\Delta = -\omega_M \Rightarrow n_{\rm opt} = \left(\frac{\kappa}{4\omega_M}\right)^2$$

Ground-state cooling needs: high optical finesse / large mechanical frequency

Laser-cooling towards the ground state

Optomechanics (Outline)

Squeezing the mechanical oscillator state

measure only one quadrature, back-action noise affects only the other one....need: $\kappa \ll \omega_M$

Measuring quadratures ("beating the SQL")

measure only one quadrature, back-action noise affects only the other one....need: $\kappa \ll \omega_M$

reconstruct mechanical Wigner density

(quantum state tomography)

$$W(x,p) \propto \int dy e^{ipy/\hbar} \rho(x-y/2,x+y/2)$$

Measuring quadratures ("beating the SQL")

measure only one quadrature, back-action noise affects only the other one....need: $\kappa \ll \omega_M$

reconstruct mechanical Wigner density

(quantum state tomography)

$$W(x,p) \propto \int dy e^{ipy/\hbar} \rho(x-y/2,x+y/2)$$

Measuring quadratures ("beating the SQL")

measure only one quadrature, back-action noise affects only the other one....need: $\kappa \ll \omega_M$

reconstruct mechanical Wigner density

(quantum state tomography)

$$W(x,p) \propto \int dy e^{ipy/\hbar} \rho(x-y/2,x+y/2)$$

Optomechanical entanglement

Bose, Jacobs, Knight 1997; Mancini et al. 1997

Optomechanical entanglement

Bose, Jacobs, Knight 1997; Mancini et al. 1997

Optomechanical entanglement

Proposed optomechanical which-path experiment and quantum eraser

Marshall, Simon, Penrose, Bouwmeester, PRL 91, 130401 (2003)

Optomechanics (Outline)

"Membrane in the middle" setup

"Membrane in the middle" setup

Experiment (Harris group, Yale)

Mechanical frequency: $\omega_M = 2\pi \cdot 134 \text{ kHz}$ Mechanical quality factor: $Q = 10^6 \div 10^7$

Optomechanical cooling from **300K** to **7mK**

1200 Thompson, Zwickl, Jayich, Marquardt, Girvin, Harris, Nature 72, 452 (2008)

Detection of displacement x: not what we need!

Detection of displacement x: not what we need!

Towards Fock state detection of a macroscopic object

Towards Fock state detection of a macroscopic object

Towards Fock state detection of a macroscopic object

- Ideal single-sided cavity: Can observe **only** phase of reflected light, i.e. x²: good
- Two-sided cavity: Can **also** observe transmitted vs. reflected intensity: **linear** in x!

Miao, H., S. Danilishin, T. Corbitt, and Y. Chen, 2009, PRL 103, 100402

Optomechanics (Outline)

Atom-membrane coupling

Note: Existing works simulate optomechanical effects using cold atoms

K.W. Murch, K. L. Moore, S. Gupta, and D. M. Stamper-Kurn, Nature Phys. **4**, 561 (2008).

F. Brennecke, S. Ritter, T. Donner, and T. Esslinger, Science **322**, 235 (2008).

...profit from small mass of atomic cloud

Here: Coupling a single atom to a macroscopic mechanical object

Challenge: huge mass ratio

Strong atom-membrane coupling via the light field

existing experiments on "optomechanics with cold atoms": labs of Dan-Stamper Kurn (Berkeley) and Tilman Esslinger (ETH)

collaboration:

LMU (M. Ludwig, FM, P.Treutlein), Innsbruck (K. Hammerer, C. Genes, M. Wallquist, P. Zoller), Boulder (J.Ye), Caltech (H. J. Kimble) Hammerer et al., PRL 2009

Goal:

$$\hat{H} = \hbar \omega_{\rm at} \hat{a}^{\dagger} \hat{a} + \hbar \omega_m \hat{b}^{\dagger} \hat{b} + \hbar G_{\rm eff} (\hat{a}^{\dagger} + \hat{a}) (\hat{b}^{\dagger} + \hat{b})$$

$$\begin{array}{c} \hat{b}^{\dagger} \hat{b} + \hat{b} \\ \text{atom} & \text{membrane} \\ \end{array} \quad \begin{array}{c} \text{atom-membrane coupling} \end{array}$$

Optomechanics (Outline)

Many modes

Scaling down

Scaling down

Scaling down

Optomechanical crystals

free-standing photonic crystal structures

from: M. Eichenfield et al., Optics Express 17, 20078 (2009), Painter group, Caltech

tight vibrational confinement: high frequencies, small mass (stronger quantum effects)

tight optical confinement: large optomechanical coupling (100 GHz/nm)

Optomechanical arrays

collective nonlinear dynamics: classical / quantum

cf. Josephson arrays

Dynamics in optomechanical arrays

Outlook

- 2D geometries
- Quantum or classical information processing and storage (continuous variables)
- Dissipative quantum many-body dynamics (quantum simulations)
- Hybrid devices: interfacing GHz qubits with light

Photon-phonon translator

(concept: Painter group, Caltech)

 $\hat{H} = \ldots + \hbar g_0 (\hat{a}_2^{\dagger} \hat{a}_1 + \hat{a}_1^{\dagger} \hat{a}_2) (\hat{b} + \hat{b}^{\dagger})$

Superconducting qubit coupled to nanomechanical resonator

swap excitation between qubit and mechanical resonator in a few ns!

Conversion of quantum information

Recent trends

- Ground-state cooling: success! (spring 2011) [Teufel et al. in microwave circuit; Painter group in optical regime]
- Optomechanical (photonic) crystals
- Multiple mechanical/optical modes
- Option: build arrays or 'optomechanical circuits'
- Strong improvements in coupling
- Possibly soon: ultrastrong coupling (resolve single photonphonon coupling)
- Hybrid systems: Convert GHz quantum information (superconducting qubit) to photons
- Hybrid systems: atom/mechanics [e.g. Treutlein group]
- Levitating spheres: weak decoherence! [Barker/ Chang et al./ Romero-Isart et al.]

Optomechanics: general outlook

Fundamental tests of quantum mechanics in a new regime: entanglement with 'macroscopic' objects, unconventional decoherence?

[e.g.: gravitationally induced?]

Mechanics as a 'bus' for connecting hybrid components: superconducting qubits, spins, photons, cold atoms,

Precision measurements

[e.g. testing deviations from Newtonian gravity due to extra dimensions]

Optomechanical circuits & arrays Exploit nonlinearities for classical and quantum information processing, storage, and amplification; study collective dynamics in arrays

Parameters of Optomechanical Systems

Mechanical damping rate

 $\Gamma_{\rm m}$ rate of energy loss, linewidth in mechanical spectrum

 $\Gamma_{\rm m} \bar{n}_{\rm th}$ rate of re-thermalization, ground state decoherence rate

$$Q = \frac{\Omega_{\rm m}}{\Gamma_{\rm m}}$$

Mechanical quality factor, number of oscillations during damping time

Optomechanical coupling strength

*g*₀ Single-photon optomechanical coupling rate nonclassical mechanical quantum states,

g Linearized (driving-enhanced) optomechanical coupling rate

optomechanical damping rate, state transfer rate, ...

Cooperativities

Linearized (driving-enhanced) cooperativity

 $C = \frac{g_0^2 \bar{n}_{cav}}{\Gamma_m \kappa}$ Optomechanically induced transparency, instability towards optomech. oscillations

Linearized (driving-enhanced) quantum cooperativity

$$C_{\rm th} = \mathcal{C} = \frac{g_0^2 \bar{n}_{\rm cav}}{\Gamma_{\rm m} \bar{n}_{\rm th} \kappa}$$

ground state cooling, state transfer, entanglement, squeezing of light, ...

Single-photon cooperativity

$$C_0 = \frac{g_0^2}{\Gamma_{\rm m}\kappa}$$

Single-photon "quantum" cooperativity

$$C_{0,\rm th} = \mathcal{C} = \frac{g_0^2}{\Gamma_{\rm m}\bar{n}_{\rm th}\kappa}$$

Photon interaction

$$g_0 \hat{a}^{\dagger} \hat{a} (\hat{b} + \hat{b}^{\dagger}) \quad \mapsto -\frac{g_0^2}{\Omega_{\rm m}} (\hat{a}^{\dagger} \hat{a})^2$$

photon blockade, photon QND measurement, ...

PAGANELLA 2125 mL RIFUGIO LA RODA

IFUG

Linear Optomechanics

PASSO S.ANTONIO

Displacement detection Optical Spring Cooling & Amplification Two-tone drive: "Optomechanically induced transparency" State transfer, pulsed operation Wavelength conversion Radiation Pressure Shot Noise Squeezing of Light Squeezing of Mechanics Entanglement Precision measurements

Optomechanical Circuits

Bandstructure in arrays
Synchronization/patterns in arrays
Transport & pulses in arrays

Nonlinear Optomechanics

Self-induced mechanical oscillations
 Synchronization of oscillations
 Chaos

LAGO

Nonlinear QuantumOptomechanicsPhonon number detection

 Phonon number detection
 Phonon shot noise
 Photon blockade
 Optomechanical "which-way" experiment
 Nonclassical mechanical q. states
 Nonlinear OMIT
 Noncl. via Conditional Detection
 Single-photon sources
 Coupling to other two-level systems

Linear Optomechanics

- Displacement detection
- Optical Spring
- Cooling & Amplification
- Two-tone drive: "Optomechanically induced transparency"
- Ground state cooling
- State transfer, pulsed operation
- Wavelength conversion
- Radiation Pressure Shot Noise
- Squeezing of Light
- Squeezing of Mechanics
- Light-Mechanics Entanglement
- Accelerometers
- Single-quadrature detection, Wigner density
- Optomechanics with an active medium
- Measure gravity or other small forces
- Mechanics-Mechanics entanglement
- Pulsed measurement
- Quantum Feedback
- Rotational Optomechanics

Multimode

- Mechanical information processing
- Bandstructure in arrays
- Synchronization/patterns in arrays
- Transport & pulses in arrays

Nonlinear Optomechanics

- Self-induced mechanical oscillations
- Attractor diagram?
- Synchronization of oscillations
- Chaos

O White: yet unknown challenges/goals

Nonlinear Quantum Optomechanics

- QND Phonon number detection
- Phonon shot noise
- Photon blockade
- Optomechanical
 "which was " and a size
 - "which-way" experiment
- Nonclassical mechanical q. states
- Nonlinear OMIT
- Noncl. via Conditional Detection
- Single-photon sources
- Coupling to other two-level systems
- Optomechanical Matter-Wave Interferometry

Optomechanics

Review "Cavity Optomechanics": M.Aspelmeyer, T. Kippenberg, FM arXiv: 1303.0733