Welcome to SQEL!

Welcome to the Superconducting Quantum Electronics Lab. Our group focuses on the study of the properties of mesoscopic superconducting devices, ranging from fully metallic to hybrid superconductor-semiconductor systems. Using state of the art cryogenic techniques, we explore condensed matter physics at low temperatures, typically ranging from several Kelvin down to 10 milli Kelvin, both experimentally and theoretically.

Being situated at the NEST laboratory in Pisa, a large part of our research is performed on devices fabricated in house. Our facilities include an ISO 6 rated clean room featuring modern Electron Beam Lithography systems. Our shadow angle evaporator allows us to fabricate high quality mesoscopic devices consisting out of several different materials under Ultra High Vacuum conditions with a high degree of control over optional insulating oxide barriers. These devices are then loaded in one of our four state of the art helium 3 / helium 4 dilution cryostats, that reach sub 100 milli Kelvin temperatures.

On the experimental side, to supplement electrical characterization, we often investigate the thermal response of (hybrid) superconducting systems. The thermal behaviour can be enlighting in its own right, but can also be exploited to coherently control the flow of heat to realize cooling, heating, thermal diodes and even thermal logic in these mesoscopic devices.

In conjunction with our experimental efforts, our group proudly features several researchers that specialize in theoretical physics, thus creating a working environment rich of different knowledge and expertise.

Research highlights

Coherent caloritronics

Phase-coherent caloritronics takes advantage of long-range phase coherence in superconducting condensates to manipulate heat currents in solid-state mesoscopic circuits…

Read more

Hybrid and topologically protected systems

The emergence of Majorana bound states in semiconducting nanowires is investigated by means of charge and heat quantum transport properties through normal-superconductor interfaces…

Read more

Ferromagnetic insulator-superconductor systems

A renewed interest in studying ferromagnetic/superconductor structures came with the development of superconducting spintronics. A ferromagnetic insulator in contact with a superconductor is known to induce an exchange splitting of the…

Read more

Recent publications

Iorio, A., Crippa, A., Turini, B., Salimian, S., Carrega, M., … Heun, S. (2023, March 10). Half-integer Shapiro steps in highly transmissive InSb nanoflag Josephson junctions. arXiv. http://doi.org/10.48550/arXiv.2303.05951. arXiv: http://arxiv.org/abs/2303.05951
Ruf, L., Puglia, C., De Simoni, G., Ivanov, Y. P., Elalaily, T., … Di Bernardo, A. (2023, February 27). Gate-control of superconducting current: relevant parameters and perspectives. arXiv. http://doi.org/10.48550/arXiv.2302.13734. arXiv: http://arxiv.org/abs/2302.13734
Paolucci, F., Germanese, G., Braggio, A., & Giazotto, F. (2023, February 6). A highly-sensitive broadband superconducting thermoelectric single-photon detector. arXiv. arXiv: http://arxiv.org/abs/2302.02933
Paolucci, F., De Simoni, G., & Giazotto, F. (2023). A gate- and flux-controlled supercurrent diode. Applied Physics Letters, 122(4), 042601. http://doi.org/10.1063/5.0136709. arXiv: http://arxiv.org/abs/2211.12127
Paolucci, F., Solinas, P., & Giazotto, F. (2022). Inductive Superconducting Quantum Interference Proximity Transistor: the L-SQUIPT. Physical Review Applied, 18(5), 054042. http://doi.org/10.1103/PhysRevApplied.18.054042. arXiv: http://arxiv.org/abs/2203.03948
Turini, B., Salimian, S., Carrega, M., Iorio, A., Strambini, E., … Heun, S. (2022). Josephson Diode Effect in High Mobility InSb Nanoflags. Nano Letters, 22(21), 8502–8508. http://doi.org/10.1021/acs.nanolett.2c02899. arXiv: http://arxiv.org/abs/2207.08772
Hijano, A., Bergeret, F. S., Giazotto, F., & Braggio, A. (2022, November 8). Microwave-assisted thermoelectricity in SIS’ tunnel junctions. arXiv. arXiv: http://arxiv.org/abs/2211.04288
Blasi, G., Giazotto, F., & Haack, G. (2022, August 30). Hybrid normal-superconducting Aharonov-Bohm quantum thermal device. arXiv. arXiv: http://arxiv.org/abs/2208.14336
De Simoni, G., Cassola, L., Ligato, N., Tettamanzi, G. C., & Giazotto, F. (2022). Ultra-Highly Linear Magnetic Flux-to-Voltage response in Proximity-based Mesoscopic bi-SQUIDs. Physical Review Applied, 18(1), 014073. http://doi.org/10.1103/PhysRevApplied.18.014073. arXiv: http://arxiv.org/abs/2112.09421
Germanese, G., Paolucci, F., Marchegiani, G., Braggio, A., & Giazotto, F. (2022, July 21). Phase-control of bipolar thermoelectricity in Josephson tunnel junctions. arXiv. arXiv: http://arxiv.org/abs/2207.10595
Bernazzani, L., Marchegiani, G., Giazotto, F., Roddaro, S., & Braggio, A. (2022, July 18). Bipolar Thermoelectricity in Bilayer-Graphene/Superconductor Tunnel Junctions. arXiv. arXiv: http://arxiv.org/abs/2207.08908
Guarcello, C., Citro, R., Giazotto, F., & Braggio, A. (2022). Temperature-biased double-loop Josephson flux transducer. Physical Review Applied, 18(1), 014037. http://doi.org/10.1103/PhysRevApplied.18.014037. arXiv: http://arxiv.org/abs/2110.10585
De Simoni, G., & Giazotto, F. (2022, July 1). Ultra linear magnetic flux-to-voltage conversion in superconducting quantum interference proximity transistors. arXiv. arXiv: http://arxiv.org/abs/2207.00339
Chirolli, L., Mercaldo, M. T., Guarcello, C., Giazotto, F., & Cuoco, M. (2022). Colossal orbital-Edelstein effect in non-centrosymmetric superconductors. Physical Review Letters, 128(21), 217703. http://doi.org/10.1103/PhysRevLett.128.217703. arXiv: http://arxiv.org/abs/2107.07476
Enrico, E., Croin, L., Strambini, E., & Giazotto, F. (2022). Single charge transport in a fully superconducting SQUISET locally tuned by self-inductance effects. AIP Advances, 12(5), 055122. http://doi.org/10.1063/5.0084168. arXiv: http://arxiv.org/abs/1901.01248
Mercaldo, M. T., Ortix, C., Giazotto, F., & Cuoco, M. (2022). Zero magnetic-field orbital vortices in s-wave spin-singlet superconductors. Physical Review B, 105(14), L140507. http://doi.org/10.1103/PhysRevB.105.L140507. arXiv: http://arxiv.org/abs/2105.09025
Ligato, N., Paolucci, F., Strambini, E., & Giazotto, F. (2022). Thermal superconducting quantum interference proximity transistor. Nature Physics. http://doi.org/10.1038/s41567-022-01578-z. arXiv: http://arxiv.org/abs/2107.08936
Guarcello, C., Chirolli, L., Mercaldo, M. T., Giazotto, F., & Cuoco, M. (2022). Frustration driven Josephson phase dynamics. Physical Review B, 105(13), 134503. http://doi.org/10.1103/PhysRevB.105.134503. arXiv: http://arxiv.org/abs/2201.07697
Telesio, F., Carrega, M., Cappelli, G., Iorio, A., Crippa, A., … Heun, S. (2022). Evidence of Josephson coupling in a few-layer black phosphorus planar Josephson junction. ACS Nano, 16(3), 3538–3545. http://doi.org/10.1021/acsnano.1c09315. arXiv: http://arxiv.org/abs/2110.02877
Puglia, C., De Simoni, G., & Giazotto, F. (2022). Phase slips dynamics in gated Ti and V all-metallic supercurrent nano-transistors: a review. Journal of Physics D: Applied Physics, 55(5), 055301. http://doi.org/10.1088/1361-6463/ac2e8b. arXiv: http://arxiv.org/abs/2102.10699
Polini, M., Giazotto, F., Fong, K. C., Pop, I. M., Schuck, C., … Pisignano, D. (2022). Materials and devices for fundamental quantum science and quantum technologies. ArXiv:2201.09260 [Cond-Mat, Physics:Quant-Ph]. arXiv: http://arxiv.org/abs/2201.09260
Strambini, E., Spies, M., Ligato, N., Ilic, S., Rouco, M., … Giazotto, F. (2022). Rectification in a Eu-chalcogenide-based superconducting diode. Nature Communications, 13(1), 2431. http://doi.org/10.1038/s41467-022-29990-2. arXiv: http://arxiv.org/abs/2109.01061
Germanese, G., Paolucci, F., Marchegiani, G., Braggio, A., & Giazotto, F. (2022). Bipolar Thermoelectric Josephson Engine. Nature Nanotechnology, 17(10), 1084–1090. http://doi.org/10.1038/s41565-022-01208-y. arXiv: http://arxiv.org/abs/2202.02121
Paolucci, F., Crisà, F., De Simoni, G., Bours, L., Puglia, C., … Giazotto, F. (2021). Electrostatic field-driven supercurrent suppression in ionic-gated metallic Josephson nanotransistors. Nano Letters, 21(24), 10309–10314. http://doi.org/10.1021/acs.nanolett.1c03481. arXiv: http://arxiv.org/abs/2107.00935
Germanese, G., Paolucci, F., Marchegiani, G., Braggio, A., & Giazotto, F. (2021). Spontaneous symmetry breaking-induced thermospin effect in superconducting tunnel junctions. Physical Review B, 104(18), 184502. http://doi.org/10.1103/PhysRevB.104.184502. arXiv: http://arxiv.org/abs/2105.01527
Mercaldo, M. T., Giazotto, F., & Cuoco, M. (2021). Spectroscopic Signatures of Gate-Controlled Superconducting Phases. Physical Review Research, 3(4), 043042. http://doi.org/10.1103/PhysRevResearch.3.043042. arXiv: http://arxiv.org/abs/2012.01490
De Simoni, G., Battisti, S., Ligato, N., Mercaldo, M. T., Cuoco, M., & Giazotto, F. (2021). Gate-control of the current-flux relation of a Josephson quantum interferometer based on proximitized metallic nanojuntions. ACS Applied Electronic Materials, 3(9), 3927–3935. http://doi.org/10.1021/acsaelm.1c00508. arXiv: http://arxiv.org/abs/2106.03572
Ligato, N., Strambini, E., Paolucci, F., & Giazotto, F. (2021). Preliminary demonstration of a persistent Josephson phase-slip memory cell with topological protection. Nature Communications, 12(1), 5200. http://doi.org/10.1038/s41467-021-25209-y. arXiv: http://arxiv.org/abs/2005.14298
Scharf, B., Braggio, A., Strambini, E., Giazotto, F., & Hankiewicz, E. M. (2021). Thermodynamics in topological Josephson junctions. Physical Review Research, 3(3), 033062. http://doi.org/10.1103/PhysRevResearch.3.033062. arXiv: http://arxiv.org/abs/2103.10923
Blasi, G., Taddei, F., Arrachea, L., Carrega, M., & Braggio, A. (2021). Nonlocal thermoelectric engines in hybrid topological Josephson junctions. Physical Review B, 103(23), 235434. http://doi.org/10.1103/PhysRevB.103.235434. arXiv: http://arxiv.org/abs/2103.14394
Iorio, A., Strambini, E., Haack, G., Campisi, M., & Giazotto, F. (2021). Photonic Heat Rectification in a System of Coupled Qubits. Physical Review Applied, 15(5), 054050. http://doi.org/10.1103/PhysRevApplied.15.054050. arXiv: https://link.aps.org/doi/10.1103/PhysRevApplied.15.054050
Chirolli, L., Cea, T., & Giazotto, F. (2021). Impact of electrostatic fields in layered crystalline BCS superconductors. Physical Review Research, 3(2), 023135. http://doi.org/10.1103/PhysRevResearch.3.023135. arXiv: http://arxiv.org/abs/2012.13911
Hijano, A., Ilić, S., Rouco, M., González-Orellana, C., Ilyn, M., … Bergeret, F. S. (2021). Coexistence of superconductivity and spin-splitting fields in superconductor/ferromagnetic insulator bilayers of arbitrary thickness. Physical Review Research, 3(2), 023131. http://doi.org/10.1103/PhysRevResearch.3.023131. arXiv: http://arxiv.org/abs/2012.15549
Paolucci, F., & Giazotto, F. (2021). GHz Superconducting Single-Photon Detectors for Dark Matter Search. Instruments, 5(2), 14. http://doi.org/10.3390/instruments5020014. arXiv: http://arxiv.org/abs/2101.08558
Solinas, P., Amoretti, A., & Giazotto, F. (2021). Schwinger effect in a Bardeen-Cooper-Schrieffer superconductor. Physical Review Letters, 126(11), 117001. http://doi.org/10.1103/PhysRevLett.126.117001. arXiv: http://arxiv.org/abs/2007.08323
Puglia, C., De Simoni, G., & Giazotto, F. (2021). Gate control of superconductivity in mesoscopic all-metallic devices. Materials, 14(5), 1243. http://doi.org/10.3390/ma14051243. arXiv: http://arxiv.org/abs/2102.00215
Gresta, D., Blasi, G., Taddei, F., Carrega, M., Braggio, A., & Arrachea, L. (2021). Signatures of Jackiw-Rebbi resonance in the thermal conductance of topological Josephson junctions with magnetic islands. Physical Review B, 103(7), 075439. http://doi.org/10.1103/PhysRevB.103.075439. arXiv: http://arxiv.org/abs/2012.12630
Paolucci, F., Ligato, N., Germanese, G., Buccheri, V., & Giazotto, F. (2021). Fully superconducting Josephson bolometers for gigahertz astronomy. Applied Sciences, 11(2), 746. http://doi.org/10.3390/app11020746. arXiv: http://arxiv.org/abs/2011.08745
Haack, G., & Giazotto, F. (2021). Non-linear regime for enhanced performance of an Aharonov-Bohm heat engine. AVS Quantum Science, 3(4), 046801. http://doi.org/10.1116/5.0064936. arXiv: http://arxiv.org/abs/2107.13222
Blasi, G., Taddei, F., Arrachea, L., Carrega, M., & Braggio, A. (2020). Nonlocal thermoelectricity in a topological Andreev interferometer. Physical Review B, 102(24), 241302. http://doi.org/10.1103/PhysRevB.102.241302. arXiv: http://arxiv.org/abs/2007.16183
Marchegiani, G., Braggio, A., & Giazotto, F. (2020). Noise effects in the nonlinear thermoelectricity of a Josephson junction. Applied Physics Letters, 117(21), 212601. http://doi.org/10.1063/5.0029984. arXiv: http://arxiv.org/abs/2009.05565
Paolucci, F., Buccheri, V., Germanese, G., Ligato, N., Paoletti, R., … Giazotto, F. (2020). Development of highly sensitive nanoscale transition edge sensors for gigahertz astronomy and dark matter search. Journal of Applied Physics, 128(19), 194502. http://doi.org/10.1063/5.0021996. arXiv: https://aip.scitation.org/doi/10.1063/5.0021996
Scharf, B., Braggio, A., Strambini, E., Giazotto, F., & Hankiewicz, E. M. (2020). Topological Josephson Heat Engine. Communications Physics, 3(1), 198. http://doi.org/10.1038/s42005-020-00463-6. arXiv: http://arxiv.org/abs/2002.05492
Yang, L., Steinhauer, S., Strambini, E., Lettner, T., Schweickert, L., … Giazotto, F. (2020). Proximitized Josephson junctions in highly-doped InAs nanowires robust to optical illumination. Nanotechnology, 32(7), 075001. doi:10.1088/1361-6528/abc44e. arXiv: https://dx.doi.org/10.1088/1361-6528/abc44e
Marchegiani, G., Braggio, A., & Giazotto, F. (2020). Phase-tunable thermoelectricity in a Josephson junction. Physical Review Research, 2(4), 043091. http://doi.org/10.1103/PhysRevResearch.2.043091. arXiv: http://arxiv.org/abs/2006.10631
Paolucci, F., Ligato, N., Buccheri, V., Germanese, G., Virtanen, P., & Giazotto, F. (2020). Hypersensitive tunable Josephson escape sensor for gigahertz astronomy. Physical Review Applied, 14(3), 034055. http://doi.org/10.1103/PhysRevApplied.14.034055. arXiv: http://arxiv.org/abs/2003.05966
Rugliancich, A., Paoletti, R., Biesuz, N., Bitossi, M., Paolucci, F., & Stiaccini, L. (2020). Development of a terahertz scanning apparatus with automatic object detection capabilities. In Millimetre Wave and Terahertz Sensors and Technology XIII (Vol. 11541, p. 115410I). International Society for Optics and Photonics. http://doi.org/10.1117/12.2574055
Mercaldo, M. T., Solinas, P., Giazotto, F., & Cuoco, M. (2020). Electrically Tunable Superconductivity Through Surface Orbital Polarization. Physical Review Applied, 14(3), 034041. http://doi.org/10.1103/PhysRevApplied.14.034041. arXiv: https://link.aps.org/doi/10.1103/PhysRevApplied.14.034041
Bours, L., Mercaldo, M. T., Cuoco, M., Strambini, E., & Giazotto, F. (2020). Unveiling Mechanisms of Electric Field Effects on Superconductors by Magnetic Field Response. Physical Review Research, 2(3), 033353. http://doi.org/10.1103/PhysRevResearch.2.033353. arXiv: http://arxiv.org/abs/2003.01655
Rocci, M., De Simoni, G., Puglia, C., Esposti, D. D., Strambini, E., … Giazotto, F. (2020). Gate-Controlled Suspended Titanium Nanobridge Supercurrent Transistor. ACS Nano. doi:10.1021/acsnano.0c05355. arXiv: https://doi.org/10.1021/acsnano.0c05355

List of all publications »

Latest news
  • Open post-doc position at SQEL
    A one-year (eventually renewable) post-doc position (experimental) will be opened in summer 2021 to work in the low temperature nanotechnology labs at CNR-NANO & Scuola Normale Superiore in Pisa. High motivation and a basic education in solid-state physics or superconductivity or spintronics is welcome. The work will be part of an ambitious ongoing European project … Continue reading "Open post-doc position at SQEL"Read more